1. **Problem:** Let X be a metrizable TVS and Y a TVS. Let $T : X \to Y$ be a linear map such that for every sequence $\{x_n\}_{n\geq 1} \subset X, x_n \to 0$ implies, $\{T(x_n)\}_{n\geq 1}$ is a Cauchy sequence. Show that T is continuous.

Solution: See, Thm 1.32 in the book "Functional Analysis" by W. Rudin.

2. **Problem:** Consider $\Lambda_m : l^2 \to \mathbb{C}$ defined by $\Lambda_m(x) = \sum_{1}^m n^2 x(n)$. Let $x_n = \frac{1}{n} e_n$. Show that $K = \{x_n\} \cup \{0\}$ is compact. Show that each $\Lambda_m(K)$ is a bounded set but $\{\Lambda_m(K)\}_{m \ge 1}$ is not uniformly bounded.

Solution: Let $\{V_{\alpha}\}$ is an arbitrary open cover of K so that 0 is contained in an open set say V_{α} . Since $x_n = \frac{1}{n}e_n \to 0$ in l_2 , we shall have $x_n \in V_{\alpha}$ except finitely many points and those finitely many x_n can be covered in finitely many open sets.

Therefore, K can be covered by finitely many open sets and hence it is compact.

For the other part note that

$$\Lambda_m(x_n) = m \quad \text{if} \quad n \le m$$
$$= 0 \quad \text{if} \quad n > m.$$

This shows that $\Lambda_m(K)$ is a bounded set but $\{\Lambda_m(K)\}_{m\geq 1}$ is not uniformly bounded.

3. **Problem:** Let X be a separable normed linear space. Show that X^* , with the weak^{*}- topology is separable.

Solution: See Lemma 10.15. from the book "Linear Chaos" by Karl-G. Grosse-Erdmann and Alfred Peris Manguillot.

4. **Problem:** Let X be a *LCTVS* and A, B two compact convex sets. Show that the extreme points of the convex hull, $\partial_e CO(A \cup B) = \partial_e A \cup \partial_e B$.

Solution: It may happen that $\partial_e A \cup \partial_e B \not\subseteq \partial_e CO(A \cup B)$. I am giving an example below: Take $X = \mathbb{R}, A = [1, 2], B = [2, 3]$. Then we get $CO(A \cup B) = [1, 3]$ and $\partial_e CO(A \cup B) = \{1, 3\}$ where $\partial_e A \cup \partial_e B = \{1, 2, 3\} \not\subseteq \partial_e CO(A \cup B)$.

5. **Problem:** Let K be a convex, compact set in a LCTVS X. Let $a: K \to [0, 1]$ be an onto, affine, continuous map. Show that $a^{-1}\{0\}$ is an extreme convex set.

Solution: The set $S := a^{-1}\{0\}$ is non-empty as it is given that a is onto. First we will show that S is a convext set. Take $x, y \in S$ and $\lambda \in (0, 1)$. Now, using the fact that a is affine map and ax = ay = 0 we get $a((1 - \lambda)x + \lambda y) = (1 - \lambda)ax + \lambda ay = 0$ which shows that S is a convex set. We now show that S is an extreme set. Take $z \in S$ such that $z = (1 - \lambda)x + \lambda y$ for some $x, y \in K$. Applying a both sides we get, $az = (1 - \lambda)ax + \lambda ay$. Now, as $z \in S$ we have $(1 - \lambda)ax + \lambda ay = 0$. But as $\lambda \ge 0, (1 - \lambda) \ge 0$ and $ax \ge 0, ay \ge 0$ the above equality is true only when ax = ay = 0 i.e $x, y \in S$. Hence, we are done.

6. **Problem:** Let K be a compact, convext set in a LCTVS. Let $x_0 \in K$. Show that there exists a probability measure μ with $\mu(\overline{\partial_e K}) = 1$ and the resultant $\gamma(\mu) = x_0$.

Solution: For the solution one can see the paper of E. Bishop, K. de Leeuw, "The representations of linear functionals by measures on set of extreme points", Ann. Inst. Fourier (Grenoble), 9 (1959), 305-331.

In this paper they proved Choquet's theorem without the assumption that K is metrizable.

7.

8.

- 9. **Problem:** Give complete details to show that any closed subspace of l^1 has the Radon-Nikodym property.
- 10. **Problem:** State and prove the Exhaustion Lemma for vector measures.

Solution: See Lemma:4 from the book "VECTOR MEASURES" written by J. DIESTEL and J.J. UHL, JR.